Smooth Group Actions on Definite 4 - Manifolds and Moduli Spaces
نویسنده
چکیده
In this paper we give an application of equivariant moduli spaces to the study of smooth group actions on certain 4-manifolds. A rich source of examples for such actions is the collection of algebraic surfaces (compact and nonsingular) together with their groups of algebraic automorphisms. From this collection, further examples of smooth but generally nonalgebraic actions can be constructed by an equivariant connected sum along an orbit of isolated points. Given a smooth oriented 4-manifold X which is diffeomorphic to a connected sum of algebraic surfaces, we can ask: (i) which (finite) groups can act smoothly on X preserving the orientation, and (ii) how closely does a smooth action on X resemble some equivariant connected sum of algebraic actions on the algebraic surface factors of X? For the purposes of this paper we will restrict our attention to the simplest case, namely X p2(C) #...# p2(C), a connected sum of n copies of the complex projective plane (arranged so that X is simply connected). Furthermore,
منابع مشابه
On Casson-type Instanton Moduli Spaces over Negative Definite Four-manifolds
Recently Andrei Teleman considered instanton moduli spaces over negative definite four-manifolds X with b2(X) ≥ 1. If b2(X) is divisible by four and b1(X) = 1 a gauge-theoretic invariant can be defined; it is a count of flat connections modulo the gauge group. Our first result shows that if such a moduli space is non-empty and the manifold admits a connected sum decomposition X ∼= X1#X2 then bo...
متن کاملModuli Spaces of Instantons on Noncommutative 4-Manifolds
Studied are moduli spaces of self dual or anti-self dual connections on noncommutative 4-manifolds, especially deformation quantization of compact spin Riemannian 4-manifolds and their isometry groups have 2-torus subgroup. Then such moduli spaces of irreducible modules associated with highestweights of compact connected semisimple Lie groups are smooth manifolds with dimension determined by th...
متن کاملSymplectic Forms on Moduli Spaces of Flat Connections on 2-Manifolds
Let G be a compact connected semisimple Lie group. We extend the techniques of Weinstein [W] to give a construction in group cohomology of symplectic forms ω on ‘twisted’ moduli spaces of representations of the fundamental group π of a 2-manifold Σ (the smooth analogues of Hom(π1(Σ), G)/G) and on relative character varieties of fundamental groups of 2-manifolds. We extend this construction to e...
متن کاملCurvature and Injectivity Radius Estimates for Einstein 4-manifolds
It is of fundamental interest to study the geometric and analytic properties of compact Einstein manifolds and their moduli. In dimension 2 these problems are well understood. A 2-dimensional Einstein manifold, (M, g), has constant curvature, which after normalization, can be taken to be −1, 0 or 1. Thus, (M, g) is the quotient of a space form and the metric, g, is completely determined by the ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کامل